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1 Introduction

This thesis consists of two papers, both dealing with (quite different) aspects
of T -theory, which can be described as the study of “tight maps”. T -theory
traces its origin to the late 1970’s, where it turned out to answer questions
raised in phylogenetic analysis, i.e. the study of the evolutionary history of
a set of organisms. The main problem being; given a set of species, and a
notion of evolutionary distance between any two species within the set, is it
possible to accurately represent this information as a phylogenetic tree, with
the edge lengths in the tree reflecting the evolutionary distance between the
species?

Many ways of providing solutions to this problem has emerged, one of
them being T -theory. However, T -theory has also proved itself valuable in a
wide range of problems, which the two papers in this thesis are evidence of.

The main tool in T -theory is the T -construction, which to any set X and
symmetric map v : Xn → R, n ∈ Z+ := {1, 2, 3, . . . }, associates a geometric
structure called the tight span ofX with respect to v. The tight span captures
a lot of the structure that is endowed on X by the map v. For example, if
X is the set of leaves in a tree (in the combinatorial sense of the words), and
v : X2 → R is the metric on X induced by the tree, then the tight span of
X with respect to d recaptures the underlying tree structure.

The name T -construction stems from the abundance of the letter ‘T’ as
first letter of words like ‘tight span’, ‘tight map’ and ‘tree’. For an overview
of T -theory, see [4].

2 A crash course in T -theory

As mentioned in the introduction, the main tool in T -theory is the T -
construction, defined in its full generality as follows. LetX be any non-empty
set, and let v : Xn → R, n ∈ Z+, be symmetric, i.e.

v(x1, . . . , xn) = v(xσ(1), . . . , xσ(n))

for all permutations σ of the set {1, . . . , n}. A map f : X → R is tight over
(X, v) if

f(x) = max
x2,...,xn∈X

{
v(x, x2, . . . , xn)−

n∑
i=2

f(xi)

}
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for all x ∈ X. The tight span of (X, v), denoted by T (X, v), is the set of all
tight maps over (X, v). However, in this general case, not much can be said
about T (X, v). It seems like the interesting cases arise when v satisfies some
boundedness condition, the two most studied being when (X, v) is a metric
space, and when (X, v) is a valuated matroid.

2.1 The tight span of a metric space

Let (X, d) be a metric space, i.e. X is a non-empty set and d : X2 → R≥0

satisfying

• d(x, x) = 0 for all x ∈ X,

• d is symmetric, and

• d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ X.

For simplicity we assume that X is finite, with |X| = n. Then a map
f : X → R is tight if,

f(x) = max
y∈X

(
d(x, y)− f(y)

)
,

i.e. if
f(x) + f(y) ≥ d(x, y)

for all x, y ∈ X, and for each x ∈ X there is a y ∈ X with

f(x) + f(y) = d(x, y).

We can define a metric dT on T (X, d) through

dT (f, f ′) = max
x∈X

|f(x)− f ′(x)| .

Furthermore, the mapping X → T (X, d), x 7→ fx, where fx(y) = d(x, y), is
an isomorphism from (X, d) into

(
T (X, d), dT

)
. In particular, for x ∈ X and

f ∈ T (d) we have

dT (fx, f) = max
y∈X

|fx(y)− f(y)| = max
y∈X

|d(x, y)− f(y)| = f(x).

For example, let X = {x, y, z, w}, and let d : X2 → R be given by
d(x, y) = d(y, z) = d(z, w) = d(x,w) = 3 and d(x, z) = d(y, w) = 4. Then
T (X, d) can be shown to be the metric space given in Figure 2.1, where each
edge has length 1 and the central square has the “city block”-metric, i.e.
geodesics are given by vertical and horizontal line segments.
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Figure 1: The tight span of the metric described in Section 2.1.

2.2 The tight span of a valuated matroid

Let (E, v)n be a valuated matroid of rank n, with n ∈ {2, 3, . . . }, i.e. E is a
non-empty set and v is a map v : En → R ∪ {−∞} satisfying

• v is symmetric,

• v(e1, . . . , en) = −∞ for every sequence e1, . . . , en ∈ E with |{e1, . . . , en}| <
n, and

• for all e1, . . . , en, f1, . . . , fn ∈ E, the inequality

v(e1, . . . , en) + v(f1, . . . , fn)

≤ max
1≤i≤n

{v(e1, . . . , ei−1, f1, ei+1, . . . , en) + v(ei, f2, . . . , fn)}

holds.

Now, recall that an R-tree (T, d) is a metric space satisfying

• for each p, q ∈ T there is a unique isometry ψpq : [0, d(p, q)] ↪→ T with
ψpq(0) = p and ψpq

(
d(p, q)

)
= q,

• all continuous injective maps [0, 1] ↪→ T , t 7→ pt satisfy d(p0, p1) =
d(p0, pt) + d(pt, p1) for all t ∈ [0, 1], and

• for each p ∈ T there is an isometric embedding ψ : R → T with
ψ(0) = p.
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In [9] it is shown that the tight span of a rank 2 valuated matroid is always
an infinite R-tree. In general, the tight span of a rank n valuated matroid
is an (n− 1)-dimensional analogue of an R-tree, satisfying for example that
for each point p ∈ T (E, v) there is an isometry ψ : Rn−1 ↪→ T (E, v) with
ψ(0, . . . , 0) = p.

3 Paper 1 — A “non-additive” description of

℘-adic norms

Let F be a discretely valuated field, i.e. there is map |·| : F → Z ∪ {−∞}
satisfying

• |·| restricted to the non-zero elements of F is a surjective homomor-
phism from the multiplicative group of F to the group Z under addi-
tion,

• |0| = −∞,

• |x+ y| ≤ max {|x| , |y|} for all x, y ∈ F .

Now consider the vector space F n, n ∈ N. A ℘-adic norm is a map f : F n →
R ∪ −∞ satisfying

• f(kx) = |k|+ f(x) for all k ∈ F , x ∈ F n,

• f(x+ y) ≤ min f(x), f(y) for all x, y ∈ F n, and

• f(x) = −∞ if and only if x = 0.

℘-adic norms, defined in this way, has been studied since the late 1940’s (see
[3, 8]). At first the norms themselves were of interest, and later the whole
space of ℘-adic norms on F n (see [5]) were studied. In 1984, F. Bruhat and
J. Tits showed in in [1] that the space of ℘-adic norms on F n is a geometric
realization of the euclidean building for the general linear group of F n. We
don’t really need to understand what this means, but rather note that in [9],
W. Terhalle showed that the tight span of a certain valuated matroid M(F n)
connected to the vector space F n is also a geometric realization of the same
building.
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This suggested a connection between this tight span and ℘-adic norms.
In [6], the author showed that the elements of the tight span of M(F n)
considered by W. Terhalle are in fact ℘-adic norms on F n.

In [10], W. Terhalle considers another set of maps, the hull of a valuated
matroid, which includes the tight maps. In particular, for a map f in the
hull of a valuated matroid, the map f + c is also in the hull for all c ∈ R, a
property that is also true for ℘-adic norms, but not for tight maps.

In this paper we give a complete characterization of ℘-adic norms in
terms of the maps in the hull of M(F n). In particular, we get a description
of ℘-adic norms that does not explicitly refer to the vector nature of F n,
hence the name non-additive. This paper has been submitted to the journal
“Contributions to Algebra and Geometry” in Septembre 2004.

4 Paper 2 — Classification of six point met-

rics — revisited

This paper deals with the more “concrete” subject of finite metrics. The aim
of the paper was, initially, to classify the different types of metrics on six
points using techniques presented in [4], concluding the work started in [7]
where the prime metrics on six points were classified. Here, the main idea is
the study of coherent decompositions, which is a decomposition of a metric d
on a finite set X as

d = d1 + · · ·+ dk,

for metrics d1, . . . , dk on X, where the structure of T (X, d) is decomposed
into T (X, d1), . . . , T (X, dk).

However, during the course of working on this, B. Sturmfels and J. Yu
published a classification of the six point metrics (see [11]). Unfortunately,
their paper gave little explanation of why the classification (and in particular
the definition of generic metrics) is a natural one, using advanced theory on
triangulations of polytopes. Hence the purpose of this paper is twofold; (i)
to give a detailed account for why the classification is a reasonable one, and
to present an independent verification of their result.

We have thus completed our classification, and our results agree com-
pletely with those of B. Sturmfels and J. Yu.
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1 Introduction

1.1 Notations, Definitions, and Standard Facts

In this note, we consider a ℘-adic field F , i.e., a field F (with 0 = 0F and
1 = 1F denoting, respectively, the additively and multiplicatively neutral
element in F ) together with a ℘-adic valuation, i.e. a map

F → R := R ∪ {−∞} : x 7→ |x| = |x|℘

that satisfies following conditions for all x, y ∈ F :

(V0) |x| = −∞ if and only if x = 0,

(V1) |x · y| = |x|+ |y|, and

(V2) |x + y| ≤ max {|x|, |y|}.

Note that |1| = |−1| = 0 must hold in view of (V0), (V1), and 12 = (−1)2 =
1 which in turn implies that

|x| = |−x| and |y−1| = −|y|

holds for all x ∈ F and y ∈ F ∗ (:= F \ {0}). Thus, given any natural
number n ∈ N := {1, 2, . . . } and any n-tuple e1, . . . , en of row vectors e1 =
(e11, e12, . . . , e1n), e2 = (e21, e22, . . . , e2n), . . . , en = (en1, en2, . . . , enn) in F n,
the value

‖e1, e2, . . . , en‖ = ‖e1, e2, . . . , en‖℘ := |det(eij)i,j=1,...,n|

of the determinant of the corresponding square n× n-matrix

M(e1, e2, . . . , en) :=


e11 e12 · · · e1n

e21 e22 · · · e2n
...

...
. . .

...
en1 en2 · · · enn


only depends on the set {e1, . . . , en} of row vectors and not on the given
labeling. Thus, we can associate an element ‖B‖ = ‖B‖℘ ∈ R to every finite
subset B of F n of cardinality at most n, by putting

‖B‖ = ‖B‖℘ := ‖e1, e2, . . . , en‖.
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in case B is of the form B = {e1, e2, . . . , en} for some elements e1, e2, . . . , en ∈
E and ‖B‖ := −∞ in any other case.

Note that B is a basis of F n if and only if ‖B‖ 6= −∞ holds and that, in
particular, ‖B‖ = −∞ holds for any subset B of F n as above with #B < n.

Note also that, given any n×n square matrix M = (mij)i,j=1,...,n with entries
from F , we have

|det(M)| ≤ max
σ∈Σn

{
n∑

i=1

|miσ(i)|

}
where Σn denotes the symmetric group of order n, i.e. the group consisting
of all permutations σ of the set [n] := {1, . . . , n}.
Finally, given any non-empty subset B of F n, any element b ∈ B, and any

element e ∈ F n, we define the modified subset B
b←− e by

B
b←− e := (B \ {b}) ∪ {e} ,

and we denote, in case B is a basis of F n, the unique map k : F n × B → F
for which

e =
∑
b∈B

k(e, b)b

holds for every e ∈ F n by kB. Clearly, we have

‖B b←− e‖ = |kB(e, b)|+ ‖B‖ (1)

for every basis B of F n, every b ∈ B, and every e ∈ F n, and we have

‖B′‖ = ‖B‖+ |det
(
K(B, B′)

)
|

for any two bases B, B′, where K(B, B′) is the B ×B′-matrix

K(B, B′) :=
(
kB(b′, b)

)
b′∈B′,b∈B

and, hence,

‖B′‖ ≤ ‖B‖+ max
σ∈Σ(B′,B)

{∑
b′∈B

|kB

(
b′, σ(b′)

)
|

}
(2)

where σ runs over the set Σ(B′, B) of bijections from B′ onto B.
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1.2 Norms

Recall that, continuing with the notations and definitions from Section 1.1,
a (℘-adic) norm on F n is a map p : F n → R for which

(N) p(xe + yf) ≤ max {|x|+ p(e), |y|+ p(f)}

holds for all x, y ∈ F and e, f ∈ F n.1

Note that a map p : F n → R is a norm if and only if

(N1) p(xe) ≤ |x|+ p(e), and

(N2) p(e + f) ≤ max {p(e), p(f)}

holds x ∈ F and e, f ∈ F n, and that a map p : F n → R satisfies the condition
(N1) for all x ∈ F and e ∈ F n if and only if

(N1′) p(xe) = |x|+ p(e)

holds for all x ∈ F and e ∈ F n, because (N1) and (N1′) are obviously
equivalent in case x = 0 while, in case x 6= 0, we have

p(xe) ≤ |x|+ p(e)

= |x|+ p(x−1xe)

≤ |x|+ |x−1|+ p(xe)

= |x| − |x|+ p(xe)

= p(xe)

and, hence, p(xe) = |x|+ p(e) in case (N1) holds for all x ∈ F and e ∈ F n.

Recall also that maps p : F n → R for which

(H) ‖B‖ + p(e) ≤ maxb∈B

{
‖B b←− e‖+ p(b)

}
holds for every e ∈ F n and every non-empty subset B of F n of cardinality
at most n (or, equivalently, for every basis B of F n), were studied in [15].
Thus, it seems worth noting that there is no difference between such maps
and norms. Indeed, we will show in the next section that the following holds:

1More precisely, such maps have been called “semi-norms” in [10] while norms were
defined to be semi-norms for which p(e) 6= −∞ holds for every non-zero vector e in Fn;
however, we propose to drop this specific condition in the definition of a (℘-adic) norm to
avoid having to talk about ‘semi’-objects more often than about objects.
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Theorem 1.1. Given, as above a field F with a ℘-adic valuation, a number
n ∈ N, and a map p : F n → R, the following assertions are equivalent:

(i) p is a norm,

(ii) the inequality

(H′) p(e) ≤ maxb∈B {|kB(e, b)|+ p(b)}

holds for every basis B of F n and every element e ∈ F ,

(iii) (H) holds for every e ∈ F n and every basis B of F n.

Remark 1.2. Note that neither the condition (H) nor the condition (H′)
refer explicitly to vector addition in F n and that (H) does not even refer
to the coordinate maps kB(e, b) (refered to in (H′)) which explains why we
refer to the characterizations of norms provided by Theorem 1.1 (ii) and, in
particular, (iii) as ‘non-additive’ characterizations of norms

1.3 Tight Maps

Next, recall that, continuing with the notations introduced above, a map
p : F n → R is called tight if the following conditions hold:

(T1) ‖B‖ ≤ p(B) :=
∑

b∈B p(b) holds for all non-empty subsets B of F n of
cardinality at most n,

(T2) there exists, for every non-zero element e ∈ F n, a basis B of F n con-
taining e with p(B) = ‖B‖.

Note that a map p is tight if and only if p(e) 6= −∞ holds for every non-zero
vector e in F n and we have

(T) p(e) = max
{
‖e, e2, . . . , en‖ −

∑n
i=2 p(ei) : e2, . . . , en ∈ F n \ {0}

}
for every e ∈ F n.

In [9], it was noted that every tight map satisfies the condition (H) for
every e ∈ F n and every non-empty subset B of F n of cardinality at most n.
Consequently, Theorem 1.1 implies that any such map must be a norm. Our
second result characterizes those norms p : F n → R that are tight:
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Theorem 1.3. Continuing with the definitions and notations given in the
introduction, a map p : F n → R is tight if and only if there exist a basis B
and a map c : B → R with

∑
b∈B c(b) = ‖B‖ such that

p(e) = max
b∈B
{|kB(e, b)|+ c(b)}

holds for all e ∈ F n in which case

p(e) = max
b∈B
{|kB(e, b)|+ p(b)}

holds for all e ∈ F n and for every basis B with p(B) = ‖B‖.

Theorem 1.3 implies in particular that, given any basis B of F n and any map
c : B → R, the associated map

p = p(B,c) : F n → R : e 7→ max
b∈B
{|kB(e, b)|+ c(b)}

is always a norm, whether or nor
∑

b∈B c(b) = ‖B‖ holds. Such norms will
henceforth be called proper norms. Clearly, p(e) 6= −∞ holds for every proper
norm and every non-zero vector e ∈ F n. More specifically, Theorem 1.3
implies the following

Theorem 1.4. Given any map p : F n → R, the following assertions are
equivalent:

(i) p is a proper norm,

(ii) there exist a tight map p0 : F n → R and a real number γ ∈ R with
p(e) = γ + p0(e) for all e ∈ F n,

(iii) there exists, for every e ∈ F n \ {0}, a basis Be with p(Be) 6= −∞,
e ∈ Be, and ‖Be‖ − p(Be) ≥ ‖B‖ − p(B) for every basis B.

Remark 1.5. It is easy to see that there exist non-proper norms p : F n → R
with p(e) 6= −∞ for every non-zero vector e ∈ F n in case F is not a complete
℘-adic field with respect to its valuation |·| : F → R. Yet, one can show
(cf.[10] ) that in case F is a complete ℘-adic field relative to a discrete ℘-
adic valuation (i.e. a map |·| : F → R with |x| ∈ Z for all non-zero elements
x ∈ F ), then a norm p is proper if and only if p(e) 6= −∞ holds for every
non-zero vector e ∈ F n.
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Theorem 1.1 will be established in the next section, Theorem 1.3 in Section
3, Theorem 1.4 in Section 4, and the relation of these results with tight-span
theory and the theory of affine buildings (for the special linear group) will
be discussed in the last section.

2 Proof of Theorem 1.1

(i) ⇒ (ii): Let p : F n → R be a norm and let B = {b1, . . . , bn} be a basis of
F n. By successively applying (N), we obtain

p(e) = p

(
n∑

i=1

kB(e, bi)bi

)

≤ max

{
|kB(e, b1)|+ p(b1), p

(
n∑

i=2

kB(e, bi)bi

)}

≤ max

{
|kB(e, b1)|+ p(b1), |kB(e, b2)|+ p(b2), p

(
n∑

i=3

kB(e, bi)bi

)}
≤ · · · ≤ max

b∈B
{|kB(e, b)|+ p(b)} ,

i.e. (H′) holds for every e ∈ F and every basis of F n, as claimed.

(ii) ⇒ (i): Now assume that (ii) holds for a map p : F n → R and consider
elements x ∈ F and e, f ∈ F n. If e = 0, we have p(xe) = |x| + p(e) = −∞.
Otherwise, choose a basis B that contains e and note that

p(xe) ≤ max
b∈B
{|kB(xe, b)|+ p(b)} = |x|+ p(e)

holds in view of kB(xe, e) = |x| and kB(xe, b) = 0 for every b ∈ B − {e}.

Similarly, if e, f ∈ F n are linearly dependent and, say, f = ze holds for some
z ∈ F , we have,

p(e + f) = p
(
(1 + z)e

)
= |1 + z|+ p(e)

≤ max {|1|, |z|}+ p(e) = max {|1|+ p(e), |z|+ p(e)}
= max {p(e), p(ze)} = max {p(e), p(f)} .

7



Otherwise, if e and f are linearly independent, choose a basis B that contains
both, e and f , and note that

p(e + f) ≤ max
b∈B

(
|kB(e + f, b)|+ p(b)

)
= max

(
p(e), p(f)

)
must hold as kB(e + f, b) = 1 now holds for b ∈ {e, f}, and kB(e + f, b) = 0
for every other b ∈ B.

This shows that both, (N1) and (N2), hold for p implying that this map is
a norm.

The equivalence of (ii) and (iii) is obvious in view of (1).

3 Proof of Theorem 1.3

We will first show that, given a basis B = {e1, e2, . . . , en} of F n and a map

c : B → R with
∑

b∈B c(b) = ‖B‖, the map p : F n → R defined by

p(e) = max
b∈B
{|kB(e, b)|+ c(b)}

for all e ∈ F n is a tight map: Note first that in view of the fact that

kB(b, b′) =

{
1 if b = b′,
0 if b 6= b′,

holds for all b, b′ ∈ B, we have p(b) = c(b) for all b ∈ B. In particular, we
have p(B) = ‖B‖. We will show that (T1) and (T2) both hold for p. To
show that (T1) holds, let B′ be any basis of F n, and note that (2) implies

‖B′‖ ≤ ‖B‖+ max
σ∈Σ(B′,B)

{∑
b′∈B′

|kB

(
b′, σ(b′)

)
|

}

= max
σ∈Σ(B′,B)

{
‖B‖+

∑
b′∈B′

|kB

(
b′, σ(b′)

)
|

}

= max
σ∈Σ(B′,B)

{∑
b′∈B′

(
|kB

(
b′, σ(b′)

)
|+ c(b′)

)}
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and hence, in view of

max
σ∈Σ(B′,B)

{∑
b′∈B′

(
|kB

(
b′, σ(b′)

)
|+ c(b)

)}
≤
∑
b′∈B′

max
b∈B
{|kB(b′, b)|+ c(b)} =

∑
b′∈B′

p(b′) = p(B′),

we have ‖B′‖ ≤ p(B′), as required.

To show that p also satisfies (T2), let e be any non-zero vector in F n and
choose any element b0 ∈ B with

p(e) = |kB(e, b0)|+ p(b0).

Then B′ := B
b0←− e is a basis that contains e and

‖B′‖ = ‖B‖+ |kB(e, b0)| =
∑
b∈B

p(b) + |kB(e, b0)| =∑
b∈B\{b0}

p(b) + p(b0) + |kB(e, b0)| =
∑

b∈B\{b0}

p(b) + p(e) = p(B′) (3)

holds, so p satisfies (T2).

Conversely, suppose that p is tight. Let B be a basis of F n with p(B) = ‖B‖,
and let c : B → R be defined by c(b) = p(b) for all b ∈ B. Then

∑
b∈B c(b) =

‖B‖ holds implying that the map

p′ : F n → R : e′ 7→ p′(e) := max
b∈B
{|kB(e, b)|+ c(b)}

is tight. We claim that p and p′ must coincide: Indeed, p′(b) = p(b) = c(b)
holds for all b ∈ B and, therefore,

p′(e) = max
b∈B
{|kB(e, b)|+ c(b)}

= max
b∈B

|kB(e, b)|+ ‖B‖ −
∑
b′∈B
b′ 6=b

c(b′)

 = max
b∈B

‖B b←− e‖ −
∑
b′∈B
b′ 6=b

p(b′)


≤ max

e2,...,en∈F n\{0}

{
‖e, e2, . . . , en‖ −

n∑
i=2

p(ei)

}
= p(e),
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where the last equality follows from (T). Thus p′(e) ≤ p(e) for all e ∈ F n

and, therefore,

p(e) = max
e2,...,en∈F n\{0}

{
‖e, e2, . . . , en‖ −

n∑
i=2

p(ei)

}

≤ max
e2,...,en∈F n\{0}

{
‖e, e2, . . . , en‖ −

n∑
i=2

p′(ei)

}
= p′(e).

So, p = p′ must hold as claimed. This completes the proof of the theorem.

4 Proof of Theorem 1.4

(i) ⇒ (ii): Given any proper norm p, choose a basis B and a map c : B → R
such that

p(e) = max
b∈B
{|kB(e, b)|+ c(b)}

holds for all e ∈ E, put γ := 1
n
(
∑

b∈B c(b)− ‖B‖), define the map

c0 : B → R

by c0(b) := c(b)− γ so that∑
b∈B

c0(b) =
∑
b∈B

c(b)− n γ =
∑
b∈B

c(b)−

(∑
b∈B

c(b)− ‖B‖

)
= ‖B‖

holds, and note that p(e) = p0(e) + γ holds for all e ∈ E for the necessarily
tight map

p0 : F n → R : e 7→ p0(e) := max
b∈B
{|kB(e, b)|+ c0(b)} .

(ii) ⇒ (i): Conversely, suppose that p(e) = p0(e) + γ holds for all e ∈ E
for a tight map p0 and some γ ∈ R, choose a basis B with ‖B‖ = p0(B) so
that

p0(e) = max
b∈B
{|kB(e, b)|+ p0(b)}

holds for all e ∈ F n, and consider the map c : B → R : b 7→ p0(b) + γ. Then,

p(e) = p0(e) + γ = max
b∈B
{|kB(e, b)|+ p0(b)}+ γ

= max
b∈B
{|kB(e, b)|+ c(b)} = p(B,c)(e)
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holds for all e ∈ F n, as required.

(ii) ⇒ (iii): Now suppose again that (ii) holds. As p0 is tight, we have
p0(B) 6= −∞ and ‖B‖ ≤ p0(B) for all bases B of F n, and there is a basis Be

for each e ∈ F n \ {0} containing e with ‖Be‖ = p0(Be). Hence,

max {‖B‖ − p(B) : B is a basis of F n}
= max {‖B‖ − p0(B) : B is a basis of F n} − nγ

≤ −nγ = ‖Be‖ − p0(Be)− nγ = ‖Be‖ − p(Be)

holds as required.

(iii) ⇒ (ii): Conversely, suppose that (iii) holds, choose a basis Be for every
e ∈ F n \ {0} with e ∈ Be, p(Be) 6= −∞ and ‖Be‖ − p(Be) ≥ ‖B‖ − p(B) for
every basis B, put

γ :=
1

n
max {p(B′)− ‖B′‖ : B′ is a basis of F n}

note that γ = 1
n

(
‖Be‖ − p(Be)

)
holds for every e ∈ F n \ {0}, and consider

the map p0 : F n → R : e → p(e) − γ. By definition, p(e) = p0(e) + γ holds
for all e ∈ F n. So, it remains to show that p0 is tight, e.g., that it satisfies
(T1) and (T2). However, we have

p0(B) = p(B)−max {p(B′)− ‖B′‖ : B′ is a basis of F n}
≥ p(B)−

(
p(B)− ‖B‖

)
= ‖B‖,

so p0 satisfies (T1). To see that p0 satisfies (T2), let e ∈ F n \ {0} and note
that, again essentially by definition, we have

p0(Be) = p(Be)−
(
p(Be)− ‖Be‖

)
= ‖Be‖,

so p0 satisfies also (T2). This completes the proof.

5 Discussion: The Relation between Valu-

ated Matroids, Tight Maps, and Buildings

Norms on vector spaces over ℘-adic fields have been studied for well over 50
years. At first, interest was focused on the topology that a ℘-adic norm in-
duces on the vector space (cf. [3, 11]), but it soon broadened to studying the
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space of norms (cf. [10]). In [2], F. Bruhat and J. Tits showed in 1984 that,
for a discretely valuated ℘-adic field F , the space of proper ℘-adic norms on
the vector space F n is a ‘concrete example’, i.e. a geometric realization, of
the affine building for the special linear group SLn(F ).

Curiously enough, an apparently rather distinct geometric realization of this
building was described independently in 1992 the details of which we now
recall. Here, the starting point was the concept of a valuated matroid that
surfaced first in 1986 in [6] (as a particularly striking example of a matroid
with coefficients) and was later addressed explicitly in [1, 7]. According to
[6], a valuated matroid of rank n ≥ 2 is a pair M = Mn = (E, v)n consisting
of a non-empty set E and a non-constant map v : E → R satisfying the
following conditions:

(VM1) For all e1, . . . , en ∈ E and every permutation σ of {1, . . . , n} one has

v(e1, . . . , vn) = v(eσ(1), . . . , eσ(n)),

that is, v is totally symmetric.

(VM2) v(e1, . . . , en) = −∞ holds for every sequence of elements e1, . . . , en ∈ E
with # {e1, . . . , en} < n.

(VM3) For all e1, . . . , en, f1, . . . , fn ∈ E,

v(e1, . . . , en) + v(f1, . . . , fn)

≤ max
1≤i≤n

{v(e1, . . . , ei−1, f1, ei+1, . . . , en) + v(ei, f2, . . . , fn)}

holds.

As above, this implies that v(e1, . . . , en) = v(f1, . . . , fn) holds for any two
families e1, . . . , en and f1, . . . , fn of elements from E with {e1, . . . , en} =
{f1, . . . , fn} and that, in consequence, one can define v(B) for any finite
subset B of E of cardinality by putting v(B) := v(e1, . . . , en) in case there
are elements e1, . . . , en ∈ E with B = {e1, . . . , en}, and v(B) := −∞ else,
and one can define B to be a basis of Mn if v(B) 6= −∞ holds in which case
#B = n necessarily holds. Further, an element e ∈ E is called a loop2 if
v(e, e2, . . . , en) = −∞ holds for all e2, . . . , en ∈ E.

2To avoid having to deal with loops, it is common to add the following requirement:

(VM0) For every e ∈ E, there are elements e2, . . . , en ∈ E with v(e, e2, . . . , en) 6= −∞.
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The celebrated Grassmann-Plücker identity3

det(e1, . . . , en) · det(f1, . . . , fn)

=
n∑

i=1

det(e1, . . . , ei−1, f1, ei+1, . . . , en) · det(ei, f2, . . . , fn)

that holds for any 2n elements e1, . . . , en, f1, . . . , fn ∈ F n, implies that

Mn(F ) := (F n, ‖.‖℘)n

is a valuated matroid of rank n for any ℘-adic field F as considered above
whose set of bases is exactly the set of bases of F n while the origin of F n is
its only loop.

Moreover, it is one of the most basic results of algebraic geometry dating
back to the 19th century that a map D : Xn → F from the n-th cartesian
power Xn of a finite set X of cardinality N into F satisfies the identity

D(e1, . . . , en) ·D(f1, . . . , fn)

=
n∑

i=1

D(e1, . . . , ei−1, f1, ei+1, . . . , en) ·D(ei, f2, . . . , fn).

for all e1, . . . , en, f1, . . . , fn ∈ X if and only if there exists a map ϕ = ϕD :
X → F n with

D(e1, . . . , en) = det(ϕ(e1), . . . , ϕ(en))

for all e1, . . . , en ∈ X in which case ϕ is uniquely determined by D up to an
F -linear automorphism of F n of determinant 1 provided D does not vanish
identically (i.e., the induced F -linear map F [ϕ] : F [X] → F n is surjective).
In consequence, the sub-manifold of the projective space P(FXn

) of one-
dimensional subspaces F ·D := {x ·D : x ∈ F} of FXn

(D a non-vanishing
map from Xn into F ) that consists of all these one-dimensional subspaces

3Sketch of proof: Writing e1, . . . , êi, . . . , en for e1, . . . , ei−1, ei+1, . . . , en and
exchanging f1 and ei in case det(e1, . . . , en) = 0 6= det(f1, e1, . . . , êi, . . . , en)
for some i ∈ {1, . . . , n}, one may assume det(e1, . . . , en) 6= 0 and,
hence, f1 =

∑n
i=1 xiei for some x1, . . . , xn ∈ F which in turn implies

det(e1, . . . , en) det(f1, . . . , fn) +
∑n

i=1(−1)i det(f1, e1, . . . , êi, . . . , en) det(ei, f2, . . . , fn) =
det(e1, . . . , en) det(f1, . . . , fn)+

∑n
i=1(−1)ixi det(ei, e1, . . . , êi, . . . , en) det(ei, f2, . . . , fn) =

det(e1, . . . , en)
(
det(f1, . . . , fn)−

∑n
i=1 xi det(ei, f2, . . . , fn)

)
= 0.

13



F · D for which D satisfies these identities (i.e., the subspace of P(FXn
)

defined by these identities viewed as (homogeneous) polynomials in the ‘in-
determinate’ D(e1, . . . , en) (e1, . . . , en ∈ X)) is canonically isomorphic to the
Grassmann-Plücker variety GF (N, n) of n-dimensional subspaces of the N -
dimensional F -vectorspace FX (identifying each such one-dimensional sub-
space F ·D with the n-dimensional dual of the (N − n)-dimensional kernel
of ϕD considered as a subspace of FX using the canonical identification of
FX with its dual). Thus, valuated-matroid theory may also be viewed (as
recognized only lately by Bernd Sturmfels et al, cf. [12, 13]) as the tropical
geometry of Grassmann-Plücker varieties over valuated fields.

Generalizing the definition of tight spans given in [4] in case of metric spaces,
one may define the tight span T(E,v) of any pair (E, v) consisting of a set E

and a map v from the set Pfin(E) of finite subsets of E into R as the set
consisting of all maps p : E → R with

p(e) = sup

v(B)−
∑

f∈B\{e}

p(f)

∣∣∣∣∣∣ e ∈ B, v(B) 6= −∞

 .

In particular, the tight span of a valuated matroid M = (E, v)n denoted by
TM , consists of the set of its tight maps, i.e., the set of maps p : E → R
satisfying

(T0′) p(e) = −∞ for all loops e ∈ E,

(T1′) v(B) ≤ p(B) :=
∑

b∈B p(b) holds for all finite subsets B of E,

(T2′) there exists, for every element e ∈ E that is not a loop, a basis B of E
containing e with p(B) = v(B).

In [14], it was shown by W. Terhalle that the tight span of the valuated ma-
troid Mn(F ) is also a geometric realization of the affine building of the group
SLn(F ) (see also [9]) for any ℘-adic field F . This sugested that there must
be some connection between ℘-adic norms and the maps in the tight span
of Mn(F ) though, when we began to explore this suggestion, we didn’t ex-
pect that connection to be that close as it finally turned out and is stated in
Theorem 1.4. It follows in particular that, using Theorem 1.4, one can either
derive the description of the affine building of the group SLn(F ) in terms of
norms as given by F. Bruhat and J. Tits from that given by W. Terhalle in

14



terms of tight maps or, conversely, the description given by W. Terhalle from
that given by F. Bruhat and J. Tits.

As a special case, it follows also, as noted by W. Terhalle, that the tight
span of the valuated matroid Mn(F ) := (F n, vtriv)n, where vtriv is the trivial
valuation given by

vtriv(B) =

{
0 if B is a basis of F n,

−∞ otherwize,

is a geometric realization of the spherical building for the group GLn(F ).

We believe that affine buildings can also be recovered using appropriate
“tight-span” constructions for other linear algebraic groups.
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Classification of six-point metrics — Revisited

Jack Koolen, Johan K̊ahrström, Vincent Moulton

Draft version.

1 Introduction

The metric cone M(X) on a finite non-empty set X is a well studied object,
see for example [1], [2], and [3]. In [2], a special stratification of M(X) into
subcones is suggested using the concept of coherent decompositions. A co-
herent decomposition of a metric d is a decomposition into (possibly simpler)
metrics d1, . . . , dk with a certain structure ‘compatible’ with d, i.e. di can be
seen as a (sub)structure of d for all 1 ≤ i ≤ k. The structure in question is
the tight span of the metric.

In [8] this stratification of M(X) is explored, with the focus on determin-
ing, for metrics d and d′ on X, whether d is a coherent component of d. A
satisfactory description of the subcones of this stratification is however not
presented.

In [11], B. Sturmfels and J. Yu give a complete description of this strati-
fication in the case when |X| = 6. They use the fact that this is the same as
the secondary fan of the second hypersimplex

∆(n, 2) := conv {ei + ej | 1 ≤ i < j ≤ n} ⊂ Rn,

where {e1, . . . , en} is the standard basis of Rn, an object which is studied in
[10].

This paper can be seen as a link between [8] and [11], since we refine the
ideas from [8] to give a complete description of the above stratification of the
metric cone in terms of coherent decompositions. For completeness, most
known results are given with proof. As a conclusion, we use this to give an
independent verification of the results on metrics on 6 points by B. Sturmfels
and J. Yu.
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2 Theory

2.1 The metric cone

For the rest of this paper, we letX be a fixed non-empty finite set. Recall that
a (semi)-metric on X is a map d : X2 → R≥0 satisfying, for all x, y, z ∈ X,

(M1) d(x, x) = 0 for all x ∈ X,

(M2) d(x, y) = d(y, x),

(M3) d(x, y) + d(y, z) ≥ d(x, z).

We denote by M(X) the set of all metrics on X. It is a subset of RX2
, but

by (M1) and (M2), M(X) is contained in an
(|X|

2

)
-dimensional subspace

of RX2
, and by (M3), M(X) is actually a cone. For this reason, M(X) is

called the metric cone on X. Note also that if d1, . . . , dk ∈ M(X), then
d = d1 + · · ·+ dk ∈M(X),k ∈ N, where

d(x, y) = (d1 + · · ·+ dk)(x, y) := d1(x, y) + · · ·+ dk(x, y)

for all x, y ∈ X, called a decomposition of d into the metrics d1, . . . , dk.

2.2 The associated polyhedral and the tight span

For a metric d ∈ M(X), we define its associated polyhedral, P (d), as the
subset of RX given by

P (d) := {f : X → R | f(x) + f(y) ≥ d(x, y), for all x, y ∈ X} .

One of the main reasons for studying P (d) is because it contains the subset
T (d) ⊂ P (d) consisting of those elements f ∈ P (d) satisfying that for each
x ∈ X there is a y ∈ Y with f(x) + f(y) = d(x, y). T (d) can equivalently be
defined as the set of maps f : X → R with

f(x) = max
y∈X

{d(x, y)− f(y)} .

T (d) is interesting, since we can endow it with a metric dT (d) : T (d) → R
through

dT (d)(f, f
′) = max

x∈X
|f(x)− f ′(x)| .
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For each x ∈ X, we have that the map fx : X → R defined by fx(y) = d(x, y)
for all y ∈ X is an element of T (d), since by the triangle inequality we have

fx(y) + fx(y
′) = d(x, y) + d(x, y′) ≥ d(y, y′),

and for each y ∈ X we have fx(x) + fx(y) = d(x, x) + d(x, y) = d(x, y). Now
the map φd : X → T (d), x 7→ fx is an isometry from (X, d) into T

(
X, dT (d)

)
.

To see this, note that by the triangle inequality we have

|d(x, z)− d(y, z)| ≤ d(x, y)

for all x, y, z ∈ X, and equality is attained if z = x. Hence d(x, y) =
maxz∈X |d(x, z)− d(y, z)| for all x, y ∈ X,so

dT (d)(fx, fy) = max
z∈X

|fx(z)− fy(z)| = max
z∈X

|d(x, z)− d(y, z)| = d(x, y).

The metric space
(
T (d), dT (d)

)
is called the tight span of (X, d).

For f ∈ P (d), we denote by [f ] the minimal face of P (d) containing f ,
and we let F(d) denote the poset of faces of P (d), ordered by inclusion. The
tight span T (d) can be shown to consist of precisely the compact faces of
P (d). Hence, T (d) has a natural decomposition into faces.

Our goal is to classify the metrics on X in terms of how they ‘look’, and
hence we say that two metrics d, d′ ∈ M(X) are of the same type if there
exists a poset isomorphism ψ : F(d) → F(d′) with ψ([φd(x)]) = [φd′(x)] for
all x ∈ X. We write d ∼ d′ if d and d′ are of the same type. It is immediate
that ∼ is an equivalence relation. The main part of this paper can be seen as
the study of the equivalence classes of this relation, and how the equivalence
classes relate to each other.

2.3 The tight equality graph and some of its properties

We start with some basic definitions and notations. Recall that a graph is a
pair G = (V,E), where V is a non-empty set whose elements are called the
vertices of G and E ⊆ V 2 are the edges of G. A sequence x1, . . . , xn ∈ V ,
n ∈ N, is called a path from x1 to xn of length (n− 1) in G, if {xi, xi+1} ∈ E
for all 1 ≤ i < n. We regard the one-sequence x as a path of length 0 from
x to x for all x ∈ X (note that if {x, x} ∈ E for some x ∈ V , then x, x is a
path of length 1 from x to x). A cycle in G is a path starting and ending in
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the same vertex. For each x ∈ V , the connected component of G containing
x is defined as the set

Cx := {y ∈ V | there is a path from x to y in G } .

A connected component of G is bipartite if it contains no cycles of odd length.
Finally, recall that for a convex subset P ⊂ Rn, n ∈ N, the relative interior
of P is defined as interior of P relative the affine hull of P .

Let d ∈ M(X). To help study the faces of P (d) we make the following
construction. For each f ∈ P (d) we associate the set

K(f) = {{x, y} | x, y ∈ X with f(x) + f(y) = d(x, y)} ,

and the graph Γ(f) = (X,K(f)), called the tight equality graph of f . Note
that this graph allows for loops, i.e. {x, x} can be an edge of the graph.

Remark 2.1. For f ∈ P (d) we have f ∈ T (d) if and only if Γ(f) is not
singular, i.e. has no connected components on the form {x} for some x ∈ X.

Remark 2.2. Let f ∈ P (d) with {x} a component of Γ(f) for some x ∈ X.
Then if {x, x} ∈ K(f), it follows that K(f) = {{x, x}}. To see this, note
that if {x} is a component of Γ(f), then {x, y} /∈ K(f) for all y ∈ X, and if
{x, x} ∈ K(f) then f(x) = 0. Hence for y, y′ ∈ X with y 6= x we get

d(y, y′) ≤ d(y, x) + d(x, y′)

< f(y) + f(x) + f(x) + f(y′) = f(y) + f(y)′,

i.e. {y, y′} /∈ K(f). In particular, for such f ∈ P (d), Γ(f) has |X| − 1
bipartite components.

The tight equality graph relates to the faces of P (d) through the following
lemma and corollary.

Lemma 2.3. Let d = d1+· · ·+dk be a decomposition of the metric d ∈M(X)
into the metrics d1, . . . , dk ∈ M(X), let f1 ∈ P (d1), . . . , fk ∈ P (dk) and let
f = f1 + · · ·+ fk ∈ P (d). Then

K(f) =
k⋂

i=1

K(fi). (1)
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Proof. We have, for all x, y ∈ X,

f(x) + f(y) = f1(x) + · · ·+ fk(x) + f1(y) + · · ·+ fk(y)

≥ d1(x, y) + · · ·+ dk(x, y) = d(x, y),

so f ∈ P (d), and since by definition we have fi(x) + fi(y) ≥ di(x, y) for
all 1 ≤ i ≤ k, with equality if and only if {x, y} ∈ K(fi), we see that
{x, y} ∈ K(f) if and only if {x, y} ∈ K(fi) for all 1 ≤ i ≤ k, and thus (1)
holds.

Corollary 2.4. Let f1, . . . , fk ∈ P (d), and let f ∈ P (d) be in the relative
interior of the convex hull of f1, . . . , fk. Then

K(f) =
k⋂

i=1

K(fi).

Proof. Since f is in the relative interior of the convex hull of f1, . . . , fk, there
are elements α1, . . . , αk ∈ R+ with α1 + · · ·+ αk = 1 and

f = α1f1 + · · ·+ αkfk.

Hence the result follows by applying Lemma 2.3 to the decomposition d =
α1d+ · · ·+ αkd.

Corollary 2.5. Let F ⊂ T (d). Then there is a face of T (d) containing F
(and in particular, containing the convex hull of F ) if and only if the graph
(X,K) is non-singular, where

K :=
⋂
f∈F

K(f).

From Corollary 2.4 it follows that for two elements f, f ′ ∈ P (d) we have
[f ′] ⊆ [f ] if and only if K(f ′) ⊇ K(f), so [f ′] = [f ] if and only if K(f ′) =
K(f), and for all f ∈ P (d) we have

[f ] = {f ′ ∈ P (d) | K(f) ⊆ K(f ′)} .

Thus the set of tight equality graphs of d completely determines the face
lattice of P (d). In particular, we have the following result.
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Proposition 2.6 (Proposition 4.9, [8]). For two elements d, d′ ∈ M(X) we
have d ∼ d′ if and only if

{K(f) | f ∈ T (d)} = {K(f ′) | f ′ ∈ T (d′)} .

Proof. The ‘if’ part follows immediately, since the map ψ : F(d) → F(d′),
[f ] 7→ [f ′] where f ′ ∈ T (d) with K(f ′) = K(f) is a poset isomorphism.

For the ‘only if’ part, let ψ be the poset isomorphism from F(d) to F(d′),
let x, y ∈ X, and let Fxy be the minimal face of P (d) containing φd(x) and
φd(y). Then ψ(Fxy) is the minimal face of P (d′) containing φd′(x) and φd′(y),
since ψ

(
φd(x)

)
= [φd′(x)] and ψ

(
φd(y)

)
= [φd′(y)].

The faces on the form [f ], f ∈ T (d) of T (d) with {x, y} ∈ K(f) are pre-
cisely the compact faces of Fxy. These are mapped by ψ to the compact faces
of ψ(Fxy), which in turn are precisely the faces on the form [f ′], f ′ ∈ T (d′) of
T (d′) with {x, y} ∈ K(f ′). Thus {x, y} ∈ K(f) if and only if {x, y} ∈ K(f ′)
for elements f ∈ T (d) and f ′ ∈ T (d′) with ψ([f ]) = [f ′].

Corollary 2.7 (Theorem 4.13 and Corollary 4.14, [8]). For a finite set X
there exists only finitely many types of metrics on X.

Proof. For two metrics d and d′ on X we have d ∼ d′ if and only if

{K(f) | f ∈ T (d)} = {K(f ′) | f ′ ∈ T (d′)} ,

so the result follows from the fact that there are only finitely many graphs
on |X| points.

For an element f ∈ P (d), the graph Γ(f) also holds information about
the local structure of P (d) around [f ]. For example, we have the following
useful lemma.

Lemma 2.8 (Lemma 2, [5]). For any f ∈ P (d), the dimension of [f ] is equal
to the number of bipartite components of Γ(f).

Remark 2.9. It follows that all vertices of P (d) are elements of T (d), since if
f ∈ P (d) is a vertex then Γ(f) has no bipartite component, so by Remark 2.1
and Remark 2.2 f must be an element of T (d). We denote the vertices of
P (d) by V T (d).
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Remark 2.10. The elements of T (d) are minimal in P (d) in the sense that
for each f ∈ P (d) there is an f ′ ∈ T (d) with f ′(x) ≤ f(x) for all x ∈ X. For
example, any vertex of [f ] is such an element. Furthermore, if for f ∈ P (d)
and f ′ ∈ T (d) we have f(x) ≤ f ′(x) for all x ∈ X, then

f ′(x) = max
y∈X

(
d(x, y)− f ′(y)

)
≤ max

y∈X

(
d(x, y)− f(y)

)
≤ f(x) ≤ f ′(x)

for all x ∈ X, so f ′ = f .

2.4 Coherent decompositions

Given a decomposition of a metric d ∈ M(X) as a sum d = d1 + · · · + dk

of metrics d1, . . . , dk ∈ M(X), the associated polytope of d trivially satisfies
the inclusion

P (d) ⊇ P (d1) + · · ·+ P (dk), (2)

where

P (d1) + · · ·+ P (dk) := {f1 + · · ·+ fk | f1 ∈ P (d1), . . . , fk ∈ P (dk)} .

If the above inclusion is in fact an equality, we say that d = d1 + · · ·+ dk is a
coherent decomposition of the metric d, and we say that the sum d1 + · · ·+dk

is a coherent sum, and the set {d1, . . . , dk} is called a coherent set. A metric
d′ ∈ M(X) is called a coherent component of d, which we will write d′ . d,
if there exists an α ∈ R+ such that d = αd′ + d′′ is a coherent decomposition
of d (where d′′ := d− αd′).

Note that the relation . is a preorder on M(X). That is, . is reflexive
(since for example d = 1

2
d + 1

2
d is a coherent decomposition of d ∈ M(X)),

and transitive. For transitivity, let d, d′, d′′ ∈M(X) with d′ . d and d′′ . d′.
Then d = αd′+d1 and d′ = α′d′′+d2 for some α, α′ ∈ R+ and d1, d2 ∈M(X).
Hence

d = α(α′d′′ + d2) + d1 = αα′d′′ + (αd2 + d1)

is a coherent decomposition of d, and thus d′′ . d, as claimed. For each
d ∈M(X), we let

M(d) := {d′ ∈M(X) | d′ . d} .

We can thus restate the definition of coherent decompositions according to
the following proposition.
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Proposition 2.11. The decomposition d = d1 + · · ·+dk of the metric M(X)
into the metrics d1, . . . , dk ∈ M(X) is coherent if and only if d1, . . . , dk ∈
M(d).

Hence, the study of coherent decompositions of d is transformed to the
study of the set M(d). We will arrive at a nice description of the set M(d),
but for now we only have tools to work with coherent decompositions directly.
The following proposition is our first step to this description.

Proposition 2.12. For metrics d, d1, . . . , dk ∈M(X) with d = d1 + · · ·+ dk

the following statements are equivalent.

(i) The decomposition d = d1 + · · ·+ dk is coherent,

(ii) for each f ∈ P (d) there are elements fi ∈ P (di), 1 ≤ i ≤ k with
f = f1 + · · ·+ fk,

(iii) for each f ∈ T (d) there are elements fi ∈ T (di), 1 ≤ i ≤ k with
f = f1 + · · ·+ fk,

(iv) for each f ∈ V T (d) there are unique elements fi ∈ V T (di), 1 ≤ i ≤ k
with f = f1 + · · ·+ fk,

(v) for each f ∈ P (d) there are elements fi ∈ P (di), 1 ≤ i ≤ k with

K(f) =
k⋂

i=1

K(fi).

Proof. First we note that (i) and (ii) are equivalent by the definition of
coherent decomposition. Now assume (ii) holds, let f ∈ P (d) and fi ∈ P (di),
1 ≤ i ≤ k with

f = f1 + · · ·+ fk.

Thus (v) follows from Lemma 2.3. In particular we have K(f) ⊆ K(fi) for
all 1 ≤ i ≤ k, so if K(f) is non-singular, then K(f1), . . . , K(fk) are all non-
singular. Thus fi ∈ T (di) for all 1 ≤ i ≤ k by Remark 2.1, and so (ii) implies
(iii). Furthermore, by Lemma 2.8 it follows that

dim[f ] ≥ dim[fi] (3)
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for all 1 ≤ i ≤ k. In particular if dim[f ] = 0 then dim[fi] = 0 for all
1 ≤ i ≤ k, i.e. if f ∈ V T (d) then fi ∈ V T (di) for all 1 ≤ i ≤ k. For
uniqueness, suppose

f = f1 + · · ·+ fk = f ′1 + · · ·+ f ′k

for some fi ∈ V T (di), 1 ≤ i ≤ k. Then K(f) ⊆ K(fi) ∩ K(f ′i) for all
1 ≤ i ≤ k, i.e. the graph

(
X,K(fi) ∩ K(f ′i)

)
is non-singular and contains

no bipartite component. Hence by Corollary 2.5 there is a face in T (di)
containing fi and f ′i , and by Corollary 2.4 the relative interior of fi and f ′i is
a vertex, i.e. fi = f ′i , and so (ii) implies (iv).

Now, (ii) follows from (iii) by Remark 2.10, and (iii) follows from (iv)
by Corollary 2.4. Finally, assume that (v) holds, and let f ∈ V T (d) and
fi ∈ P (di), 1 ≤ i ≤ k with

K(f) =
k⋂

i=1

K(fi).

Let f ′ = f1 + · · ·+ fk. Then by Lemma 2.3

K(f ′) =
k⋂

i=1

K(fi) = K(f),

so since f ∈ V T (d) we have f ′ = f , and thus (v) implies (iii).

Coherent decomopositions are interesting since they induce a decompo-
sition of the tight span. In detail, we have the following situation. Let
d, d′ ∈ M(X) be metrics with d′ . d, and define a map ψd

d′ : F(d) → F(d′)
by

ψd
d′([f ]) := {f ′ ∈ T (d′) | K(f ′) ⊇ K(f)} .

To see that ψd
d′ is well defined, note that for each f ∈ P (d) there is an

element f ′ ∈ P (d′) with K(f) ⊆ K(f ′), by Proposition 2.12 (v), and hence
the image of [f ] is a face of P (d′). Furthermore, by Corollary 2.5, ψd

d′([f ])
is a face of T (d′) for all f ∈ T (d). Also, ψd

d′ is surjective, since for each
f ′ ∈ P (d′), for an element f ∈ P (d) with K(f) maximal with K(f) ⊆ K(f ′)
we have ψd

d′([f ]) = [f ′]. Also, ψd
d′ preserves incidence, i.e. [f ] ⊆ [f ′] implies

ψd
d′([f ]) ⊆ ψd

d′([f ′]), and by (3) we have

dim[f ] ≥ dimψd
d′([f ])
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for all f ∈ T (d). Finally, for each x ∈ X we have

ψd
d′

(
[φd(x)]

)
= [φd′(x)].

Studying the situation above, we see that the crucial fact that makes ψd
d′

well-defined is the fact that for each f ∈ P (d) there is an f ′ ∈ P (d′) with
K(f) ⊆ K(f ′). Hence if this is true, there is an incidence-preserving map
ψ : F(d) → F(d′) with ψ([φd(x)]) = [φd′(x)] for all x ∈ X. By the following
theorem, this is also precisely what is needed for d′ . d to hold.

Theorem 2.13 (Variation of Theorem 4.1, [8]). Let d and d′ be two metrics
on X. Then d′ . d if and only if for each f ∈ P (d) there is an f ′ ∈ P (d′)
such that K(f) ⊆ K(f ′).

Proof. The ‘only if’ part follows from Proposition 2.12 (v). For the ‘if’ part,
we need to find an α ∈ R+ such that d′′ := d − αd′ is a metric, and that
for each f ∈ V T (d) there are elements f ′ ∈ V T (d′) and f ′′ ∈ V T (d′′) with
f = f ′ + f ′′.

By assumption, for each f ∈ V T (d) there is an f ′ ∈ V T (d′) such that
K(f) ⊆ K(f ′). Hence, for each x, y ∈ X with f ′(x) + f ′(y) > d′(x, y) we
have f(x) + f(y) > d(x, y), so for all such x, y ∈ X we have

f(x) + f(y)− d(x, y)

f ′(x) + f ′(y)− d′(x, y)
> 0.

Since the set V T (d)∪V T (d′) is finite, it follows that there is an α ∈ R+ with

f(x) + f(y)− d(x, y)

f ′(x) + f ′(y)− d′(x, y)
≥ α

for all f ∈ V T (d), f ′ ∈ V T (d′) with K(f) ⊆ K(f ′) and x, y ∈ X with
{x, y} /∈ K(f ′). In particular, we have

f(x) + f(y)− d(x, y) ≥ αf ′(x) + αf ′(y) + αd′(x, y),

or equivalently,

(f − αf ′)(x) + (f − αf ′)(y) ≥ (d− αd′)(x, y),

for all f ∈ V T (d), f ′ ∈ V T (d′) and x, y ∈ X, with equality for all {x, y} ∈
K(f) if K(f ′) ⊆ K(f). Hence, if d′′ := d− αd′ is a metric, the result follows
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by Proposition 2.12 (iii). Thus we need to show that d′′ satisfies the triangle
inequality, i.e. that

d′′(x, y) + d′′(y, z) ≥ d′′(x, z)

for all x, y, z ∈ X. To see this, consider fy ∈ T (d), i.e. the element with
fy(u) = d(y, u) for all u ∈ X, and let f ′ ∈ V (d′) with K(fy) ⊆ K(f ′). In
particular, {y, y} ∈ K(f ′), so f ′(y) = 0, and thus f ′(u) = d′(y, u) for all
u ∈ X. Hence

d′′(x, z) ≤ (fy − αf ′)(x) + (fy − αf ′)(z)

= fy(x)− αf ′(x) + fy(z)− αf ′(z)

= d(x, y)− αd′(x, y) + d(y, z)− αd′(y, z)

= (d− αd′)(x, y) + (d− αd′)(y, z)

= d′′(x, y) + d′′(y, z).

By the construction of α in the proof above, we have as an immediate
consequence the following corollary.

Corollary 2.14 (Theorem 4.1, [8]). Let d and d′ be two metrics on X. Then
d = αd′ + d′′ is a coherent decomposition of d if and only if 0 ≤ α ≤ αd

d′,
where

αd
d′ := min

f∈V T (d)

{
max

f ′∈V T (d′)

{
min

{x,y}/∈K(f ′)

{
f(x) + f(y)− d(x, y)

f ′(x) + f ′(y)− d′(x, y)

}}}
.

In particular, d′ is a coherent component of d if and only if αd
d′ > 0.

Corollary 2.15 (Corollary 3.5, [8]). If d = d1+ · · ·+dk, k ∈ N, is a coherent
decomposition of d ∈M(X) into d1, . . . , dk ∈M(X), then

d′ = α1d1 + · · ·+ αkdk

is a coherent decomposition of d′ for all α1, . . . , αk ∈ R≥0.

Proof. If d′ = α1d1 + · · ·+ αkdk is a coherent decomposition, then

βd′ = βα1d1 + · · ·+ βαkdk

is a coherent decomposition for all β ∈ R+, so we may assume that 0 < α1 <
1. We use induction on k. If k = 1 the statement is trivially true. So suppose
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it is true for k = p− 1 ≥ 1 and let α1, . . . , αp ∈ R≥0. Then by the induction
hypothesis

d′′ = α2d2 + · · ·+ αpdp

is a coherent decomposition of d′′. Now,

d′ = α1d1 + · · ·+ αpdp = α1d1 + d′′,

so since α1 < 1 ≤ αd′

d1
the result follows by Corollary 2.14.

The value αd
d′ is called the coherency index of d with respect to d′, and was

defined in [8]. The coherency index provides a nice way to check whether or
not a decomposition of a metric is coherent.

By Proposition 2.6 we see that d′ . d and d . d′ if and only if d ∼ d′. In
particular, d ∼ d′ if and only if M(d) = M(d′). Hence . induces a partial
order on the types of metrics on M(X), with d′ . d if d′ can be obtained
from d by possibly ‘collapsing’ some of d:s structure. If d′ . d but d′ � d we
write d′ � d.

We are now ready to describe the M(d) for d ∈ M(X). Two natural
classes of metrics arise from the partial order ., the minimal non-zero met-
rics, which we call the prime metrics, and the maximal metrics, which we
call the generic metrics (the word generic being motivated by the previous
paragraph). From now on, let Π be a fixed set of prime metrics on X, one
of each type, and for each metric d on X let

Π(d) := {p ∈ Π | p . d} .

From Corollary 2.7 it follows that Π(d) is finite for all metrics d on X. Also,
it follows from Corollary 2.15 that

M(d) :=

 ∑
p∈Π(d)

αpp

∣∣∣∣ αp ∈ R≥0

 ,

and thus M(d) is the cone positively spanned by Π(d).

Proposition 2.16. Let d be a metric on X. Then d is in the relative interior
of the cone M(d). In particular, d′ ' d for some d′ ∈ M(X) if and only if
d′ is contained in the relative interior of M(d), and d′ � d if and only if d′

is contained in one of the proper faces of M(d).
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Proof. Since αd
p > 0 for all p ∈ Π(d), and since the set Π(d) is finite there is

an α ∈ R+ with

d = d′ +
∑

p∈Π(d)

αp

a coherent decomposition of d, where d′ ∈M(d).

Proposition 2.16 gives us a way of characterizing the generic metrics in
terms of maximal coherent subsets of Π.

Corollary 2.17. The generic types of metrics on X correspond exactly to
the maximal coherent subsets P ⊂ Π, i.e. the maximal subsets such that

d =
∑
p∈P

p

is a coherent sum.

3 Classifying the six point metrics

The aim of this paper was originally to classify the types of metrics when
|X| = 6. However, during the course of this work, a classification was pre-
sented in [11] by Sturmfels and Yu. Their results are summarized in the
following theorem.

Theorem 3.1 (Theorem 1, [11]). There are 194, 160 generic types of metrics
on six points, and they come in 339 symmetry classes.

We have independently verified their results, using ideas presented in
this paper. We searched for the maximal coherent subsets of Π, which by
Corollary 2.17 correspond to the generic types of metric on X. It requires
that the set Π is known.

The prime metrics on six points were characterized in [9], and there are
1, 235 of them, in 14 symmetry classes. Just testing each subset P ⊂ Π if
it is coherent or not is hence intractable, since the number of tests needed
are in the order of 21,235. To minimize the search space we used the fact
that if P ⊂ Π is a coherent set, then {p, p′} must be a coherent set for all
p, p′ ∈ P . Hence we created a graph whose vertices are the prime metrics,
and the edges are all pairs p, p′ ∈ Π with {p, p′} a coherent set. We then
searched for all maximal cliques in this graph, since each maximal coherent
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set must be contained in some such clique. Up to symmetry, there were 482
such cliques, with the maximal having size 25. It was then possible to search
directly for maximal coherent sets. Our results agreed completely with the
results of B. Sturmfels and J. Yu.

B. Sturmfels and J. Yu have set up an excellent web page where all the
six point metrics are listed, along with images, at

http://bio.math.berkeley.edu/SixPointMetrics.

We used programs written in C++ and Objective Caml for our computa-
tions, which can be obtained by request from J. K̊ahrström (through email,
johan.kahrstrom@math.uu.se). The C++-programs use the package CDD++
by K. Fukuda for calculating the tight span of a metric. This package can
be downloaded from

http://www.ifor.math.ethz.ch/~fukuda/cdd_home/cdd.html.
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