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1. Introduction

The representation theory of Lie algebras and Lie groups is a thriving
area of research, with applications in a wide range of areas such as func-
tional analysis, number theory, theoretical physics and chemistry, among
others. Throughout this thesis, we fix a complex finite-dimensional semi-
simple Lie algebra g = n_ & hdn, with a fixed triangular decomposition.
The full category of g-modules is very complicated in general, for ex-
ample there is no classification of simple g-modules for g # slo. The
theory for finite dimensional modules is well understood, but for general
modules the situation is complicated.

1.1 The BGG category O

The category O, first defined in [BGG76], is the category of finitely gener-
ated weight g-modules that are locally U/(n)-finite. For a comprehensive
review of category O, its history and main problems, Humphreys’ recent
book [Hum08] is a good source.

Category O is a natural extension of the category of finite dimensional
g-modules. It is ‘small enough’ to be effectively studied, yet it contains
valuable information on the general representation theory of g and its en-
veloping algebra U(g). For example, by a classical result of Duflo [Duf77],
the primitive ideals of U(g), i.e. ideals given as the annihilator Ann M
of some simple g-module M, are all on the form Ann L, where L is a
simple module in O.

To each weight A € h*, there is an associated simple highest weight
g-module L(A) and a Verma module A(A), and each Verma module has
a finite composition series by simple highest weight modules. In cat-
egory O each simple module L(A) has in addition a projective cover
P(\), which in turn is filtered by Verma modules. This filtration sat-
isfies the remarkable BGG-reciprocity (where the left hand side denotes
the multiplicity of A(x) in the Verma-filtration of P()\)),

(P(N): Aw) = [Aw): LV

The BGG-reciprocity is mentioned in [BGG76| as the main motivation
behind the definition of the category O.

Determination of the composition factors of Verma modules and their
multiplicities was an early fundamental problem. The category O gives
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Figure 1.1: The orbit of the zero weight under the dot action of the Weyl group
of sl3 (left) and sog (right). The simple roots are marked as « and 3, and the
corresponding simple reflections by r and s, with the dashed lines being their
lines of reflection. The dots show the integral span of the roots, and the circles
show half the sum of the negative roots.

a good framework for studying this problem (also noted in [BGG76] as a
motivation for studying the category): it decomposes into a direct sum
of blocks, indexed by dominant weights, and each such block is equivalent
to the module category over a finite dimensional quasi-hereditary asso-
ciative algebra. Such categories are much better understood than the
general theory of g-modules, which provides a substantial simplification
of the problem. This approach proved successful, and culminated in the
Kazhdan-Lusztig conjecture three years later [KL79] (which by now has
been a well established theorem for almost thirty years, proved in [BB81]
and [BK81]).

There are a lot of similarities between the different blocks, as all reg-
ular blocks corresponding to integral weights are equivalent, and the
remaining blocks are in a sense degenerate versions. For this reason
we will mainly restrict our attention to the ‘most complicated’ principal
block Og, containing the trivial module, and we let A denote the cor-
responding finite dimensional algebra. The highest weights occurring in
modules in this category are given by the orbit of the zero weight under
the so-called ‘dot action’ of the Weyl group W, given on a weight A € h*
by

w-Ai=w(d+p) —p,
where p is half the sum of the positive roots. Figure 1.1 shows this orbit
for the algebras sl3 and sog.

For each element z € W, we get a simple module L(z) and a Verma
module A(z) both of highest weight x-0, and a projective module P(z) —
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the projective cover of L(x) (Figure 1 in Paper I illustrates the non-zero
weight spaces of each of the simple modules in Oy for the Lie algebra sl3).
These three families of modules each provide a basis for the Grothendieck
group of Oy, and the Kazhdan-Lusztig conjecture provides a recursive
method for finding the transformation matrix for changing between these
bases.

At the heart of the Kazhdan-Lusztig conjecture lies the Iwahori-Hecke
algebra H of W, which is the free Z[v,v~!]-module over the basis
{H; |z € W} with the relations

HH,=H,+ (v_l —v)Hy for simple reflections s, and
H,H, = Hyg, if {(zy) = L(x) + L(y).

For each x € W, Kazhdan and Lusztig construct an element

H, € H,+ ) vZ[v|H,
yeW

which is fixed under the involution mapping v to v~! and mapping H,
to Hyill for y € W. The set { H, | x € W } is a basis for H, called the
Kazhdan-Lusztig basis. By expressing the elements of this basis in the
standard basis,

ﬂx = Z hy,w(U)Hya
yeW

we obtain a set of polynomials in the indeterminate v, called the
Kazhdan-Lusztig polynomials. One form of the Kazhdan-Lusztig
conjecture now states that

[Aly): L(2)] = hy(1),

hence giving an answer to the question of composition factors of Verma
modules.

This connection between category Qg and the Hecke algebra of W can
be greatly refined as follows, where we implicitly use the equivalence
of Oy with the category of A-modules. The algebra A has a natural
positive Z-grading, and we denote by A% the corresponding Z-covering.
We say that an A-module M has a graded lift if there exists an A%-
module that is isomorphic to M as an A-module after forgetting the
grading, and we denote the category of graded modules by (9%. Not all
modules in Oy have graded lifts, but in [BGS96] it is shown that the
simple modules, Verma modules and projective modules all have graded
lifts. Furthermore, the Grothendieck group of OF is isomorphic to the
Hecke algebra H, where a shift in grading corresponds to multiplication
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by v, and

L)) = H,,
A(@)] = Ha, and,
P(a)] = H,.

Here, H » denotes the elements of the dual Kazhdan-Lusztig basis, which
satisfies R
T(ﬂzﬂy) = gyt

where 7: H — Z[v,v™1] is the symmetrizing trace defined by
T(Hy) = 6zpe.

Since AZ is positively graded, the grading of a module translates to a
filtration of the corresponding ungraded module by submodules (where
in addition each composition factor is semi-simple). Hence the graded
picture contains a large amount of extra information about the corres-
ponding modules.

For example, in the case g = sl3, we have W = Ss3; the simple reflec-
tions are r = (1 2) and s = (2 3); and the elements of W are e, 7, s, rs,
sr, and rsr (cf. left part of Figure 1.1). The Kazhdan-Lusztig basis and
dual Kazhdan-Lusztig basis of H can be computed fairly easily by hand:

H, = H.,
H,=H,+vH,,
H,=H; +vH,,
H,, = H,s+vH, +vH +v*H,,
H, = H, +vH, +vH, +v*H,,
H,,, = Hesy +vHps +vHg + 0> H, + 02 H + 03 H,,

and

H,=H.—vH, — vH, + 0 Hps + v’ Hop — v’ Hygp,
H, = Hy = vHys — vHq + 02 Hyp,

ES =Hs; —vHys —vHg + U2Hrsr,

H,, = Hys — vHpg,

H, =Hy —vHg,

Ersr — HT‘S’I"'
Writing, for instance, H. in the dual Kazhdan-Lusztig basis, we get

HE = Ee + UET + ’Uﬁs + U2Ers + U2Esr + U3Ersr'
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By interpreting this in Op, we see that the dominant Verma module A(e)
has a filtration where the factors are

L(e),
L(r) & L(s),
L(rs) @ L(sr), and
L(rsr).
For a more complicated example, in the case g = sly we have W = Sy

and the simple reflections are r = (1 2), s = (2 3) and ¢t = (3 4). Writing
the element H in the dual Kazhdan-Lusztig basis we get

H.=H +
vﬁ —I—Uﬁ +vf[t+
V2 H,, +v2H,, +v?H, +0?Hgy + v Hy  + v H gyt
3HW + v H,y + B +v'H
v Hrsrt+v Hrsts+v H?"tsr+v Hsrts+v Hstsr+
v H +0°H +0°H
S H

373 373 3 1]
==rts twv Hsrt +v Hsts ==tsr +twv Hrstsr

==rsrts ==rstsr srtsr

==rsrtsrs

which tells us that the dominant verma module A(e) has a filtration
whose factors are

L(e)
L(r) @ L(s) ® L(t),
L(rs) @ L(rt) & L(sr) @ L(st) @ L(ts) ® L(srts),
L(rsr) & L(rst) & L(rts) & L(srt) & L(sts) & L(tsr) & L(rstsr), (1.1)
L(rsrt) @ L(rsts) @ L(rtsr) @ L(srts) & L(stsr),
L(rsrts) @ L(rstsr) @ L(srtsr), and
L(rsrtsr).

1.2 Tensor products

Given two g-modules M and N, we can make their tensor product M ® N
into a g-module through

x(m®@n):=(xm)@n+m® (xn).

Fixing a finite dimensional module V', we obtain an exact functor V@ __
on the category of g-modules which has many good properties. For
example, the equivalence between blocks of O mentioned in the previous
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section can be proven using such functors. By composing with projection
onto the principal block, we get an endofunctor on Oy. In general these
functors are decomposable, and the direct summands of such a functor
is called projective functors. These were introduced in [BG80|, where it
was shown (in a more general setting) that for each x € W there exists
a unique projective functor 6, satisfying

0.P(e) = P(x),

and that any projective functor on Qg can be written as a direct sum
of such functors. This was refined in [Str03], where projective functors
were shown to have graded lifts to O%. Furthermore, on the level of the
graded Grothendieck group, 0, acts by right multiplication with H .
For example, if g = sly, consider the module 0,4 L(rt) (using the nota-
tion of the previous section). In the graded Grothendieck group we have

[QrtL(rt)] = [L(rt)]ﬂrt = E’rtﬂrb
which, written in the dual Kazhdan-Lusztig basis is

H, H, =H, + (0™ +0)H, + (v +0)H+
Ers + (U_2 + 2 + ,UQ)ET‘t + Et8+

(Uil + U)Erst + (Uil + U)ﬂrts + (vil + U)Etsr'
Hence the module 6,;L(rt) has a filtration whose factors are
L(rt),
L(r) ® L(t) ® L(rst) @ L(rts) & L(tsr),
L(e) ® L(rs) @ L(rt) & L(rt) & L(ts), (1.2)

L(r) @ L(t) ® L(rst) @ L(rts) & L(tsr), and
L(rt).

1.3 Kostant’s problem

For two g-modules M and N, the space Hom¢ (M, N) of linear maps
from M to N has a natural U(g)-bimodule structure given by

(ufv)(m) == uf (vm),

for u,v € U(g), f € Homc(M,N) and m € M. We can thus define a
g-module structure on Home (M, N) through the adjoint action, i.e.

- fi=xf — fzx,

14



for € g. The g-submodule of Hom¢ (M, N) consisting of locally finite
elements is in fact a U(g)-sub-bimodule, which we denote by L(M, N).
Such modules are interesting for a number of reasons. For example,
they are Harish-Chandra bimodules; the principal series modules can be
expressed as L(A(X),V(u)) (where V(1) = A(p)*, in which * denotes
the simple-preserving dual on O); and they can be used to define the
twisting and completion functors ([Jos82], [Jos83], [KMO05]).

We are mainly interested in studying £(M, M) for a module M € O,
in which case it becomes a Noetherian ring. Since U(g) is locally finite
under the adjoint action of g it follows, for u € U(g), that the action of
uwon M gives an element of L(M, M). Hence we have a homomorphism
of rings

U(g) — L(M, M),

whose kernel is Ann M. Kostant posed the question whether the induced
injection

U(g)/ Ann M — L(M, M)
is a surjection for all simple modules M.

Trivially, it has the positive answer for L(e), but in general it is a
difficult problem, for which the answer is not even known for simple
highest weight modules. Early examples where the answer is negative
were found by Conze-Berline and Duflo ([CBD77]) in cases when g has
roots of different length. The question can also be of interest for non-
simple modules, and one of the early positive results was that it has the
positive answer for all Verma modules, as well as for all quotients of the
dominant Verma module A(e). In particular, it has the positive answer
for L(w,), where w, € W is the longest element of the Weyl group.
This was generalized by Gabber and Joseph in [GJ81|, where they show
that Kostant’s problem has the positive answer for L(wlw,), where w!
is the longest element of a parabolic subgroup W; of W. In [Maz05|
Mazorchuk showed that it has the positive answer for L(s), where s is a
simple reflection of W, as well as for L(swlw,) if s € W;. Furthermore,
if g is of type A, Mazorchuk and Stroppel have shown (|[MS08a]) that the
answer to Kostant’s problem is a left cell invariant®. In [MS08b], Stroppel
and Mazorchuk also showed that Kostant’s problem has the negative
answer for the sly-module L(rt) (notation as in Section 1.2). This was
quite surprising, since Joseph has shown that the fields of fractions for
U(g)/ Ann L(z) and L£(L(z), L(z)) are isomorphic for all z € W if g is
of type A.

1See Section 2.2 for the definition of left cells.
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2. Summary of papers

In this section a short summary of each paper contained in the thesis is
presented. The first paper concerns tensoring with infinite dimensional
modules, while the second and third papers both deal with Kostant’s
problem.

2.1 Paperl

Motivated by the many applications of tensoring with finite dimensional
modules, we investigate tensor products of (possibly infinite dimensional)
modules in O, with focus on the subcategory Oy. For two modules M,
N € O, their tensor product M ® N is only an element of O if at least
one of the modules M or N is finite dimensional. However, when both
modules M and N are infinite dimensional, the module M ® N still
has well defined projections onto the blocks of O. In particular, given a
module M € Oy, we can define an exact endofunctor Gp; on Oy by

Gurr: Og — Oy,
N — (M ® N) lo on modules, and
v (1d® ) lo on morphisms,

where |g denotes projection onto the principal block.

In general these functors do not behave as well as projective functors.
For example, if M is a finite dimensional module, then M* is also finite
dimensional, and the right and left adjoint of M ® _ is M* ® _, again
a projective functor. This implies that such functors take projective
modules to projective modules, tilting modules to tilting modules, and
injective modules to injective modules. If on the other hand M is an
infinite dimensional module in Op, the module M* is no longer locally
U (n)-finite and is hence no longer in Oy. The right and left adjoints of
G (which we denote by Fyy and Hyy, respectively) are thus essentially
very different types of functors. These three classes of functors still share
some of their properties with the projective functors. For instance, the
functors Fjy map projective modules to projective modules, the functors
Gr map tilting modules to tilting modules, and the functors Hy; map
injective modules to injective modules.
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Analogous to the similar case in [Nei89] and [Fie03|, where translation
functors on the category O for Kac-Moody algebras are studied, we have
that

FyN=(M*®@N)S°|

where LSO essentially means ‘the biggest quotient of L contained in Oy’
Using the simple-preserving duality x on O, we also find that

HyN = (Fy-N*)".

For each morphism ¢ : M — N between objects in Oy we obtain
corresponding natural transformations

F(p: FN —>F’]\/[7
Gwl GM — GN, and
Hwi HN —>HM

Hence, F', G and H are functors from category Oy to the category of
endofunctors on Oy, where G is covariant and F and H are contravariant.

Denote by PFun(Qy) the category of endofunctors on Oy preserving
the additive subcategory of projective modules. Similarly, denote by
TFun(Op) and IFun(Oyp) the corresponding categories preserving the ad-
ditive subcategories of tilting and injective modules, respectively. We
then have the following main theorem.

Theorem 2.1. F, G and H define faithful functors

F : Oy — PFun(0y), M — Fyy,
G : Oy — TFun(Oy), M — Gy,
H : Oy — IFun(Oy), M — Hyy,

all three satisfying Xar = Xy if and only if M = N (where X =
F,G,H).

These functors can be used to ‘create’ projective, tilting and injective
modules, as in the following proposition.

Proposition 2.2. For all modules M, N € Oq such that M has a Verma
filtration and N has a dual Verma filtration, we have

(a) FnM is projective,

(b) G N = GNM is a tilting module, and

(¢) Hy N is injective.

We also show that the functor Ga() admits the structure of a co-
monad, which is a categorical equivalent of a comultiplication, and dually
the functor Gy () admits the structure of a monad, which is a categor-
ical equivalent of a multiplication. Furthermore, we generalize the main
results of the paper to parabolic versions of category O. Finally, we
compute the ‘multiplication table’ of all FyIN and Gy N, where M and
N are simple modules in Oy and g = sl3.
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2.2 Paper Il

Paper II is mainly motivated by [MS08b], where Mazorchuk and Strop-
pel showed that Kostant’s problem has the negative answer for the sl4-
module L(rt) (notation as in Section 1.1). We systematize the method
used in [MS08b], to give a general criterion which allows us to verify
whether Kostant’s problem has the positive answer for a highest weight
module over a semi-simple Lie algebra of type A.

Hence, in this paper we assume that g = sl,, for some n € N. We rely
heavily on left and right cells, which in terms of the Hecke algebra are
defined as follows.

For two elements x, y € W, we first define the left pre-order on W by
x <y if

HH, CHH,, or equivalently, 'Hﬂx ) Hﬂy,
and similarly the right pre-order by z <gr y if

H HCH/H, orequivalently, Ech 2 EyH.
These pre-orders satisfy x <p y if and only if 27! < y~1.

The equivalence classes of these pre-orders are the left and right cells,
respectively. These order relations are closely linked to Og, as x < y if
and only if

Ann L(z) O Ann L(y),

and x <p y if and only if L(x) occurs as a composition factor of §L(y)
for some projective functor €. The right order for S3 and Sy is shown in
Figure 2.1.

In type A, any pair of left and right cells intersect in at most one
element. This was used in [MS08a| (Proposition 60) to show that

L(L(z), L(z)) = L(L(y), L(y))

if x ~1, y. In particular, the answer to Kostant’s problem for L(x) is a left
cell invariant, since x ~ y implies Ann L(x) = Ann L(y). Furthermore,
in type A each left and right cell contains a unique involution, and hence
it suffices to consider Kostant’s problem for involutions.

Fixing an involution d € W, there is a unique quotient D of A(e)
which satisfies Ann D = Ann L(d). It can be described as the unique
non-zero homomorphic image of A(e) in 03L(d). The module D has
L(d) as its only simple submodule, and

[D: L(z)] # 0 implies z <z d,

and if z ~p d then
[D: L(z)] = 0p.4.
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Figure 2.1: Right order of S3 (left) and S4 (right), where each cell is marked
in grey. If cell A can be reached from cell B by strictly moving down in the
diagram, then A > B. The lines give the right multiplication by simple
reflections, and the involutions are boxed.

Using these properties we show that the inclusion L(d) < D extends to
an inclusion

L(D,D) — L(L(d), L(d)). (2.1)

Since D is a quotient of A(e), Kostant’s problem has the positive solution
for D. Hence Kostant’s problem has the positive solution for L(d) if and
only if the inclusion (2.1) is an isomorphism.

To be able to compare £(L(d),L(d)) and £L(D, D) we introduce the

category (9 , which is the full subcategory of Oy consisting of modules
M € Oy such that

[M: L(z)] # 0 implies  <g d.

The category O contains the modules L(d), D and 64L(d). Further-
more, by [MS08b, Key statement| the module 6,L(d) is both the inject-
ive hull and projective cover of L(d) in OS{. We now use the partial
approzimation functor (defined in [KMO05, 2.4]) with respect to a certain
self-dual injective module in 0(1}. Denoting this functor by A, the module
AL(d) can be described as the maximal extension of L(d) by modules
L(zx), where z <p d.
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By the properties of D and the fact that 6;L(d) is the injective hull of
L(d) we obtain the list of inclusions

L(z) — D — AL(d) — 04L(d). (2.2)

Furthermore, A bijectively ‘lifts’ elements in £(L(d),L(d)) up to ele-
ments in £L(AL(d), AL(d)), i.e.

£(1(d), L(d)) = L(AL(d), AL()).
By (2.1) we now see that the inclusion D — AL(d) induces an inclusion
L(D,D) — L(AL(d), AL(d)). (2.3)

Finally, the module D is ‘close enough’ to being projective (i.e. up to a
submodule containing only simple composition factors on the form L(x)
where x <g d), which ensures that the inclusion (2.3) is an isomorphism
precisely when D = AL(d).

Hence, Kostant’s problem has the positive answer for L(d) if and only
if D = AL(d). By the definition of A, the fact that 6;L(d) is injective,
and since we have the string of inclusions (2.2), we obtain the main
theorem of Paper II (slightly rephrased here):

Theorem 2.3. Kostant’s problem has the positive answer for L(d) if and
only if every simple submodule of the cokernel of the canonical non-zero
map

A(e) — 04L(d)

is on the form L(x), where x ~p d.

Applying this criterion, we prove the (known) results that Kostant’s
problem has the positive answer for the socle of dominant parabolic
Verma modules, as well as for L(s) where s is a simple reflection!. Fur-
thermore, we also prove the new result that if r and s are two commuting
simple reflections, then Kostant’s problem has the positive answer for the
module L(rs) if and only if the vertices of the Dynkin diagram repres-
enting r and s are separated by at least a distance of 3.

This criterion can also, in Lie algebras of small rank, be checked by
working in the graded Grothendieck group. For example, consider the
sli-module L(rt)? (using the notation in Section 1.1). The only ele-
ment other than rt in the same right cell as rt is rts, and the elements
strictly smaller in the right pre-order are e, r, t, rs, ts, rst and tsr

!These results hold in any type, whereas our proofs only work in type A.
?Kostant’s problem has the negative answer for L(rt) by the previous paragraph, but
we show this here by direct computation using Theorem 2.3 for illustrative purposes.
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(see Figure 2.1). Comparing the filtration (1.1) of A(e) with the filtra-
tion (1.2) of 0,4 L(rt) we conclude that the image D of the non-zero map
A(e) — 0,4L(rt) has a filtration

L),
L(r) & L(t), and
L(rt),
and thus the cokernel has a filtration
L(rt),
L(r)® L(t) ® L(rst) & L(rts) & L(tsr),
L(rs) @ L(rt) ® L(rt) ® L(ts), and
L(rst) ® L(rts) @ L(tsr).

In particular, the simple modules L(rst) and L(tsr) are submodules
of the cokernel, and hence Kostant’s problem has the negative answer
for L(rt). Using this kind of computations, Paper II concludes with a
complete account for the answer to Kostant’s problem for simple modules
in Oy for sl,, for all n <5, and gives partial results for slg.

2.3 Paper III

In this paper we relate the answer to Kostant’s problem for some of the
simple modules in Oy over a semi-simple Lie algebra g to the answer for
simple modules in Oy over a semi-simple subalgebra g; of g, where [ is
a subset of the simple reflections in W.

The set I generates a subgroup Wy of W, called a parabolic subgroup.
The subset of roots of g spanned by the roots corresponding to I is a
new root system, and gy is the corresponding semi-simple Lie algebra.
For example, consider the algebra sls with simple roots a and (3, with
basis

X_0,X 3, X o-p, Hy Hg Xao,Xpg, Xoys,
—— —_———

spans n_ spans b spans n

and with Weyl group W = S3. The Weyl W group has simple reflections
r and s, corresponding to the reflections mapping o — —a and g — —f
respectively. Setting I = {r}, the root system determined by I is {a, —a'}
(see Figure 2.2), and the subalgebra g; is the subalgebra with basis

X_o,Hay Xa.

For a slightly more complicated example, consider g = so4 with simple
roots «, 3 and v (with |a| = |5| > |vy|) and corresponding simple reflec-
tions 7, s and ¢. Setting I = {s,t}, the root system determined by I is
of type By (see Figure 2.3), and the subalgebra g; is isomorphic to sos.
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Figure 2.2: In the root system for sl3, the simple reflection  determines a root
system of type Ay corresponding to a subalgebra isomorphic to sls.

Figure 2.3: In the root system for so4, the simple roots § and v span a root
system of type By (the black arrows) corresponding to a subalgebra isomorphic
to sos3.
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Figure 2.4: Under the equivalence between OFf and (95 for g = sl3, where I =
{r}, the module L;(e) corresponds to L(sr) and the module L;(r) corresponds
to L(rsr). The dots mark the integral span of the roots and the grey areas
mark the support of the corresponding module.

Let O} denote the ‘category Op’ for g;. We denote the simple g;-
module in O(I) corresponding to x € W by Lj(x), to discern it from the
g-module L(x). Let 3; denote the complement of h; in b with respect
to the Killing form. Given A € 37, there is a standard way to generate a
module Indy M € O from a module M € O, called parabolic induction.
Conversely, from any module M € O we get a module Resy M € O via
restriction to the 3r-weight A. Let £ be the restriction of w- 0 to 37, and
denote by (’)g the full subcategory of Oy consisting of modules M such
that

[M: L(m)] # 0 implies wlw, <z < w,,

where < denotes the Bruhat order on W. In [Maz05|, Mazorchuk showed

that the functors Resg and Indg define an equivalence between Of and

(’)g. The simple module L;(z) is mapped to the simple module L(zw!w,)

under this equivalence, illustrated in Figure 2.4 for the case g = sl3 and

I = {r}. Figure 2.5 shows how the elements of W; embeds into W under

the map z +— zw!lw,, where W is the Weyl group for so4 and I = {s,t}.
This result motivated the main theorem of this paper:

Theorem 2.4. Let x € Wy. Then Kostant’s problem has the positive
answer for Li(x) if and only if Kostant’s problem has the positive answer

for L(zwlw,).
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Figure 2.5: How the orbit of the zero weight for the parabolic subgroup Wy
is mapped into the orbit of the zero weight for W, in the case g = so4 and
I = {s,t} (compare with Figures 2.3 and 2.4).

To prove this theorem, we need to be able to compare £;(M, M) and
L(Indg M,Indg M) for modules M € Of (where again the subscript I is
used to indicate that the objects are gy-modules). This is accomplished
via the following result (Corollary 4.2).

Proposition 2.5. For M, N € O} we have
Homg, (V. £1(M, M)) = Homg, (V, £;(N, V)
for all finite dimensional gr-modules V' if and only if
Homg(V’, £L(Inde M, Inde M)) = Homg(V', £(Ind¢ N,Inde N))
for all finite dimensional g-modules V.

Now fix an element © € W;. As in Paper 11, there is a unique quotient
D of Ar(z) such that Ann Ly(xz) = Ann D. Since D is a quotient of the
dominant Verma module, Kostant’s problem has the positive answer for
D, i.e.

Lr(D,D)=U(gr)/ Ann D.

Since Ann D = Ann L;(x), we obtain an injection

L1(D,D) — L;(Li(z),Li(z)), (2.4)



which is a surjection if and only if Kostant’s problem has the positive
answer for Ly(x). The equivalence between Of and (98 gives us an in-
jection

L(Inde D,Ind¢ D) — C(L(zwgwo), L(xwgwo)), (2.5)

where Indg D is a quotient of the Verma module A(wlw,). We now
use a recent (unpublished) result by Mazorchuk, that Kostant’s problem
has the positive answer for each quotient of A(wlw,), to conclude that
Kostant’s problem has the positive answer for Ind¢ D. Furthermore, the
induction functor is ‘nice’ with respect to annihilators, i.e.

Ann (Indg D) = Ann (Indg L(ZC)),

and hence Kostant’s problem has the positive answer for L(zwlw,) if
and only if the inclusion (2.5) is a surjection. Using Proposition 2.5
we can now show that the map (2.4) is a surjection if and only if the
map (2.5) is a surjection, which establishes our main theorem.

Paper III concludes with some remarks on the module D used
above. Under an equivalence between Oy and a certain category
of Harish-Chandra bimodules, D corresponds to the U(g)-bimodule
U(g)/ Ann L(z), called a primitive quotient of U(g). An important
problem is the determination of simple composition factors in primitive
quotients, which can thus be solved by determining the multiplicities of
simple composition factors of D. Using Kazhdan-Lusztig combinatorics,
we show the (aforementioned) fact that D is precisely the image of the
non-zero map

Ale) — 0, L(z ).

Since all the above objects have graded lifts, this gives us the following
bound on the multiplicity [D: L(y)]:

[D: L(y)] < Zmax{[A(e): L)), [0:L(zY): L(y)(i)] } (2.6)
1€EZ
where L(y)(i) is the standard graded lift of L(y) with the grading shifted
by 3.
The above description of D bears striking resemblance with the de-
scription given by Duflo [Duf77, Proposition 10|, where D is described
as the image of a non-zero map

Ale) — C, 1V (), (2.7)

where C-1 is a completion functor (see Paper II). In [Str04] it is shown
that the right hand side of (2.7) has a graded lift, which gives the fol-
lowing bound on the multiplicity [D: L(y)}:

[D: L)) < 3 max{ [A(e): L)), [Co1 V(@) L)@} (28)

1€EZ
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For algebras g of small rank, the bound (2.6) is stronger than the
bound (2.8), but we have not been able to prove this in general. However,
Stroppel refines the bound (2.8) by using a graded version of the Duflo-
Zhelobenko four step exact sequence

0 — Cp1V(sz) — C(sp)-1V(s1) LN Cp1V(z) = Cgpy1 V() — 0,

and a similar refinement does not seem to be possible for our bound.
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Summary in Swedish

Tensorprodukter pa kategori O och Kostants problem

Denna avhandling behandlar tva aspekter av representationsteorin for
andligtdimensionella halvenkla Lie-algebror; dels en studie av tensorpro-
dukter av moduler (artikel I), dels nagot som kallas Kostants problem
(artikel IT och III).

Nér man studerar den allméinna representationsteorin fér halvenkla
Lie-algebror stoter man pa ett problem: teorin for dndligtdimensionella
moduler &r relativt enkel, medan teorin fér odndligtdimensionella modu-
ler ar valdigt komplicerad. I stéllet for att titta pa allménna oadndligtdi-
mensionella moduler begriansar vi oss darfor till en kategori av moduler
som kallas kategori O. Den ar tillrackligt ‘stor’ for att innehalla manga
intressanta odndligtdimensionella moduler, men tillrackligt ‘liten’ for att
kunna studeras pa ett effektivt satt.

Kategori O har manga bra egenskaper, bland annat delas den upp i
olika block, dar varje block &r ekvivalent med modulkategorin for en &nd-
ligtdimensionell kvasi-arftlig associativ algebra. Sadana kategorier &r i
allménhet vil studerade, vilket innebér en avsevérd férenkling av situa-
tionen. De olika blocken &r ocksé i hog grad lika, det finns till exempel
bara ett &ndligt antal ekvivalensklasser under kategoriekvivalens. Av den-
na anledning récker det ofta att begrénsa sig till det ‘mest komplicerade’
blocket Og, blocket som innehéller den triviala modulen.

Om vi fixerar en &ndligtdimensionell modul V' far vi en exakt endo-
funktor pa O genom

Ve :0-—0,
M-V ®M.

I allménhet dr en sddan funktor inte odelbar, utan den kan delas upp
som en direkt summa av funktorer, och en sadan direkt summand kallas
for en projektiv funktor. Projektiva funktorer har manga bra egenskaper,
bland annat kan de anvéndas for att bevisa ekvivalensen mellan de olika
blocken som nédmndes ovan.

Om vi & andra sidan tar tva odndligtdimensionella moduler M, N € O
géller det inte ldangre att M ® N tillhér O, produkten blir for ‘stor’.
Déremot har produkten en véldefinierad projektion pa blocket Op. Pa
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detta sétt far vi, givet en modul M € Oy, en exakt endofunktor pa Oy
definierad genom

Gur: Op — Oy,
N — (M®N)l0,

déar |g betecknar projektion pa block Og. Den forsta artikeln studerar
dessa funktorers egenskaper. De har vissa egenskaper gemensamt med
de projektiva funktorerna, men i manga avseenden &r de mer svarhan-
terliga. Till exempel har projektiva funktorer egenskapen att dess hoger-
och vénsteradjunkt sammanfaller, och denna funktor &ar igen en projek-
tiv funktor. Vénsteradjunkten Fi; och hogeradjunkten H s till funktorn
G sammanfaller ddremot inte, och de &ar inte direkta summander av
tensorprodukter. Huvudresultatet i forsta artikeln ar att funktorerna F',
G och H var och en definierar en trogen verkan av kategori Qg pa sig
sjalv, och att de bevarar de additiva delkategorierna bestaende av pro-
jektiva, vipp-, respektive injektiva moduler.

Den andra och tredje artikeln behandlar Kostants problem. Bakgrun-
den &r foljande: Lat g vara den halvenkla Lie-algebra vi arbetar med,
och U(g) dess universella omslutande algebra. Givet en g-modul M,
lat Ann M vara M:s annihilator, det vill siga alla element u € U(g)
sa att uM = 0. Definiera nu en U(g)-bimodulstruktur pa vektorrumet
Homg (M, M) av linjara avbildningar pa M genom

(ufv)(m) := uf(vm)

for alla u, v € U(g), f € Homc(M, M) och m € M. Vidare kan vi lata g
verka pa Homg (M, M) genom den adjungerade verkan:

z-f=xf — fz.

Delméngden av Homg (M, M) vars element genererar ett dndligtdimen-
sionellt delrum under g:s adjungerade verkan kan visas vara en delbimo-
dul, som vi betecknar L(M, M). Givet ett element u € U(g) definierar
u:s verkan pa M precis ett sadant element, sa vi far en ringhomomorfism
fran U(g) till L(M, M), vars kiirna d&r Ann M. Alltsa har vi en inklusion

U(g)/ Ann M — L(M, M).

Bertram Kostant stéllde fragan: for vilka enkla g-moduler &r ovanstaende
inklusion ar en bijektion? Detta har visat sig vara en mycket svar fraga
som hittills inte har fatt nagot allmént svar, inte ens for hogsta vikt-
moduler.

Artikel II begransar sig till fallet da g = sl,, for nagot n € N. Vi visar
dar ett allmént kriterium for svaret till Kostants problem fér en enkel
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modul i Op i termer av kokérnan till en speciell kanonisk avbildning (av-
bildningen (%) nedan). Med hjilp av detta kriterium bevisar vi nagra
gamla och nya resultat. For Lie-algebror av liten rang kan detta kriteri-
um studeras med hjilp av Kazhdan-Lusztig-kombinatorik, och artikeln
avslutas med en full analys av svaret till Kostants problem for alla enkla
moduler i Oy for sls, sls, sl4 och sls, samt partiella resultat for slg.

I artikel III studerar vi hur svaret pa Kostants problem for vissa enkla
g-moduler relaterar till svaret for enkla gr-moduler, dar gr &r en speciell
sorts delalgebra till g, definierad som foljer. Lat W vara g:s Weylgrupp,
och 1at S vara W:s enkla reflektioner. En delméngd I C S genererar
en parabolisk delgrupp Wy till W, och de rotter som hor till I ger oss
delalgebran gy, vars Weylgrupp ar precis W7.

De enkla g-modulerna i Oy indexeras av elementen in W, och vi la-
ter L(x) vara den modul som hor till x € W. Detsamma géller for g;-
modulerna i motsvarande kategori, och vi later L;(x) vara den g-modul
som hor till z € Wr. Huvudresultatet i artikel III sdger att svaret till
Kostants problem for gr-modulen L;(x) dr detsamma som svaret till Ko-
stants problem for g-modulen L(zw!w,), dir w! &r det lingsta elementet
i Wi och w, ér det langsta elementet i W.

Artikel III avslutas med négra resultat angdende en modul D som
anvands for att bevisa ovanstaende sats. Givet x € W ar modulen D den
unika kvoten av den dominanta Vermamodulen A(e) i Oy som uppfyller
Ann D = Ann L(z). Vi visar att D &r precis bilden av avbildningen

A(e) — 0,L(z™1). (%)

Detta ar intressant eftersom modulen D &r, under en viss kategoriekvi-
valens, ekvivalent med den primitiva kvoten U(g)/ Ann L(z). Med hjalp
av Kazhdan-Lusztig-kombinatorik ger detta oss en 6vre begriansning for
de enkla sammanséattningsfaktorerna i D.
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